Quality on Tap Annual Drinking Water Quality Report Manchester Utilities Authority For the Year 2016 Public Water System ID # 1603001

We are pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality of water and services we deliver to you everyday. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve our facilities that deliver water to you. We are committed to ensuring the quality of your water we deliver to you.

We are pleased to report that our drinking water is safe and meets federal and state requirements.

This annual Consumer Confidence Report (CCR), required by the Safe Drinking Water Act (SDWA), provides additional information on our sources of supply and the quality of the water we deliver. For more information on this report or about the next opportunity for public participation in decisions concerning drinking water, please contact;

Robert De Block, Water Utility Consultant De Block Environmental Services, LLC P.O. Box 675 Woodland Park, NJ 07424 973-998-9100 ManchesterWater@DeBlockEnvironmental.com

Regular Meetings of the Manchester Utilities Authority are held on the second Monday of each month at 7:30 PM at the Haledon Municipal Building, 510 Belmont Avenue, Haledon, New Jersey.

OVERVIEW

The Manchester Utilities Authority provides an average of 0.92 million gallons of water each day to its customers. It delivers surface water purchased from the Passaic Valley Water Commission (PVWC). The PVWC supplies the Borough with a blended supply from the North Jersey District Water Supply Commission's (NJDWSC) Wanaque Treatment Plant and from the PVWC Little Falls Treatment Plant which diverts water from the Passaic River.

The water received from both sources is extensively treated and filtered prior to distribution to the PVWC service area, which includes Manchester Utilities Authority. The Authority receives its water from the PVWC at the Burhans Ave. Pumping Station. The water is treated with orthophosphate by PVWC at the pumping station to reduce its corrosiveness and lessen the amount of lead and copper that may leach from home plumbing fixtures.

Safeguarding Our Water

As water travels over the land or underground, it is subject to potential contamination by substances that are naturally occurring or man-made. These substances can be microbes, inorganic or organic chemicals, and radioactive substances. All drinking water, including bottled water, may be reasonably expected to contain at least small amounts of some constituents. *It is important to remember that the presence of these constituents does not necessarily pose a health risk.* More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Waters Hotline (1-800-426-4791).

The Manchester Utilities Authority regularly monitors the quality of water throughout the distribution system that finds its way to you, the consumer, according to Federal and State Laws. This is all done by fully certified NJDEP and EPA certified Water Quality Laboratories.

What Do The Following Tables Mean?

The tables below show the results of our monitoring for the period of January 1st to December 31st, 2016. The table contains the name of the substance found, the highest level allowed by regulation (MCL), the ideal goals for public health, the amount detected, the usual sources of such contamination footnotes explaining our findings, and a key to units of measurements. Please note that we have provided three tables for your use. The first table displays the results of the analyses taken from the Manchester Utilities Authority Distribution System. The second table displays the results of the analyses made by the PVWC. The third table displays the results of the analyses taken by the NJDWSC.

Definitions

In the following table, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms: we've provided the following definitions:

Term	Description
AL	Action Level: The concentration of contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
CU	Color Unit
CDC	Center for Disease Control
Disinfection By- product Precursors	A common source naturally occurring organic matter in surface water. Disinfection by-products are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (DPB precursors) present in surface water
Inorganic Contaminants	Contaminants such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. These contaminants may be present in source water.
LRAA	Locational Annual Running Average Annual Running average of results for a specific sampling site.
MCL	<u>Maximum Contaminant Level</u> is the highest level of contaminant that is allowed in the drinking water. MCLs are set as close to the MCLGs as is feasible using the best available treatment technology.
MCLG	Maximum Contaminant Level Goal is the level of a contaminant in drinking water below which there is no known expected risk to health MCLGs allow a margin of safety.
MF/L	Million fibers per liter
MRDL	<u>Maximum Residual Disinfectant Level</u> is the highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MRDLG	Maximum Residual Disinfectant Level Goal the level of disinfectant allowed in drinking water below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants.
NA	Not Applicable
ND	Not Detected is a term used when a laboratory analysis demonstrates that the constituent is not present.
NTU	Nephelometric Turbidity Unit is the measure of the clarity of water. Turbidity is excess of 5 NTU is just noticeable to the average person.
Nutrients	Compounds, minerals and elements that aid growth that are both naturally occurring and manmade. Examples include nitrogen and phosphorus.
Organic Contaminants/ Volatile Organic Compounds	Compounds, including synthetic and volatile organic chemicals which are by-products of industrial processes and petroleum production, and can also come from gas stations, stormwater runoff and septic systems. Manmade chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE) and vinyl chloride. These compounds may be present in surface water.
Pesticides, Herbicides, Insecticides, Fungicides and Rodenticides	Manmade chemicals used to control pests, weeds and fungus which may come from a variety of sources such as agriculture, stormwater runoff and residential uses and may be present in source water. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine and insecticides such as chlordane.
pC/L	Picocuries per liter is a measure of radioactivity in water.
PPB	Parts per billion or micrograms per liter equals one part per billion and corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
РОЕ	Point of Entry to the water distribution system

PPM	Parts per Million or milligrams per liter (mg/l) equals one part per million and corresponds to one minute in two years or a single penny in \$10,000.
RAA	Running Annual Average
RUL	<u>Recommended Upper Limit:</u> the highest level of a constituent of drinking water that is recommended in order to protect aesthetic quality.
TON	Threshold Odor Number
TT	Treatment Technique is a required process intended to reduce the level of contaminant in drinking water.

Table 1 Manchester Utilities Authority Water Quality Report

Microbiological Contaminants

Regulated Contaminant	Units	COMPLIANCE ACHIEVED	MCL G	MCL	Highest Level	Source of Contamination
Total Coliform Bacteria	Presence /Absence	Yes	0	Less than 5% of monthly samples are positive	0	Coliform are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful bacteria may be present.

The Manchester Utilities Authority collects 10 routine total coliform samples per month.

REGULATED DISINFECTANTS and DISINFECTION BYPRODUCTS

Stage 2 Disinfection Byproducts, Note: Stage 2 DBP compliance is based on the locational running average (LRAA) calculated at each monitoring location.

Regulated Contaminant	UNIT	COMPLIANCE ACHIEVED	LRAA	Highest Detected	Range Detected	Source of Contamination/ and Comments
Total Trihalomethanes (TTHM) Stage 1	PPB	NA	80	79	48 - 79	Byproduct of water disinfection. / TTHM compliance is based on Locational Running Annual Average.
Haloacetic Acids (HAA5) Stage 1	PPB	NA	60	31	19 - 31	Byproduct of water disinfection. / HAA5 compliance is based on Locational Running Annual Average.

Disinfectants

Regulated Contaminant	Units	COMPLIANCE ACHIEVED	MRDL G	MRDL	Highest Detected	Range Detected	Source of Contamination
Chlorine as CL2 (Running avg.)	PPM	Yes	4	4	1.18	0.72 - 1.18	Chlorine is used as a drinking water disinfectant.

Inorganic Contaminants (2015 Results, Next testing required in 2018)

Regulated Contaminant	Units	MCLG	MCL	Range Detected	Highest Level	Source of Contamination
Copper	mg/L	1.3	AL=1.3	90^{th} percentile =	0.145	Corrosion of household plumbing
				0.1164		systems
Lead (N)	mg/L	0	AL=	90^{th} percentile =	0.013	Corrosion of household plumbing
			0.015	0.00271		systems

COMPLIANCE WITH THE LEAD AND COPPER RULE IS BASED ON THE 90TH PERCENTILE RESULT FROM POINTS OF USE IN THE DISTRIBUTION SYSTEM.

ADDITIONAL INFORMATION

The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate monitoring requirements for asbestos, volatile organic chemicals and synthetic organic chemicals. Our system received monitoring waivers for asbestos and synthetic organic chemicals.

Table 2 Passaic Valley Water Commission Water Quality Report

PRIMARY											
Regulated Contaminant	Units	COMPLI ACHIE		MCLG	T	MCL		High Lev		Range Detected	Source of Contamination
Turbidity	NTU	Ye	S	NA		TT (1 NTU	J)	0.1	7	0.03 - 0.17	Soil Runoff.
		Ye	S	NA	< 0.3	(% of san NTU) Min 5% Requir	nimum	100	%	NA	
Total Organic	%	Ye	S	NA		T (35% - 5		519	%	51% - 75%	Naturally present in the
Carbon						nimum Rer Required	noval	Low Achie	est		environment.
INORGAN	IC CO	NTAMINA	NTS	•		•	·			•	
Regulated Contaminant	UNIT	COMPLIA ACHIEV		MCLG	MCL	Highest Result	Ra Dete	nge ected			e of Contamination/ and Comments
Barium	PPM	Yes		2	2	0.024	0.015 -	- 0.024	Е		deposits; discharge of drilling harge from refineries
Chromium	PPB	YES		100	100	0.60	ND ·	0.60	Γ	Discharge from ste	el and pulp mills. Erosion of ural deposits.
Fluoride	PPM	Yes		4	4	0.087	0.07 -	0.087			of natural deposits
Nickel	PPB	NA		NA	NA	2.75	1.54 -	- 2.75		Erosion	of natural deposits
Nitrate	PPM	Yes		10	10	4.05	0.72-	4.05	Run		use; leaching from septic tanks osion of natural deposits.
Selenium	PPB	Yes		50	50	0.74	ND -	0.74	Discharge from petroleum and metal refine Erosion of natural deposits. Discharge from r		troleum and metal refineries;
Thallium	PPB	Yes		0.5	2	0.6	ND	-0.6	Leaching from ore processing sites; Discharg electronics, glass, and drug factories		ocessing sites; Discharge from
SOURCE V	VATEF	R PATHO	GEN M	ONITO	RING						
Contaminant	UNI	T :	Passaic R	iver		Pompton I	River			Tyj	pical Sources
Cryptosporidium Oocysts	, Oocy /L		0-0.4	1		0-0.85	57		robial j ed Sta		n surface waters throughout the
Giardia	Cysts		0-1.1	[0-1.14	13		eu siu		
SECONDA											
Detected Secondary	UNIT	RUL Achieved	RI	JL	Range	of Results					
Analytes ABS/LAS	PPB	Yes	50	0	ND	- 129					
Alkalinity	PPB	NA	N			- 129	1				
Aluminum	PPB	YES	20			- 35					
Chloride	PPM	YES	25			- 146					
Color	CU	YES		0		ND	-				
Corrosivity		No	Non-Co	-		rosive					
Hardness (as CaCo3)	PPM	YES	1	50		- 160					
Hardness (as CaCo3)	Grains /Gal	YES	1	5	7	- 9					
Iron	PPB	YES		00		ND					
Manganese	PPB	YES		0		-5	4				
Odor	TON	NO		3		- 16	4				
pH Sadium	SU	YES	6.5 t			- 8.33	4				
Sodium Sulfata	PPM	NO *	5			- 130	4				
Sulfate TDS	PPM ppm	Yes		50		- 90	4				
Zinc	PPM PPB	No YES		00 00		- 429 4	1				
							1				Possible sources of sodiur

*PVWC was above New Jersey's Recommended Upper Limit (RUL) of 50 PPM for Sodium in 2016. Possible sources of sodium include natural runoff, roadway salt runoff, upstream wastewater treatment plants and a contribution from chemicals used in the water treatment process. For healthy individuals, the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be a concern to individuals on a sodium restricted diet. If you have concerns please contact your health care provider.

Passaic Valley Water Commission Water Quality Report - Continued

ADDITIONAL PVWC TREATMENT PLANT MONITORING RESULTS

Contaminant	UNIT	Average	Range of Results	Test results presented in this table were collected in 2016 as part of a study to
Chlorate	PPB	Result 250	ND - 495	determine the general occurrence of these contaminants. PVWC continues to participate in and support these types of regulatory and research efforts to maintain a position of leadership in drinking water supply.
1,4-Dioxane	PPB	0.185	0.18 - 0.19	
Chloromethane	PPB	0.014	ND - 0.55	There are currently no drinking water standards for these contaminants although EPA
Perfluorobutan esulfonic Acid	PPB	0.004	0.0032-0.0044	has established health advisory levels for some of these to provide an estimate of acceptable drinking water levels based on health effects information.
Perfluorophept anoic Acid	PPB	0.0038	0.0032-0.0049	The results observed in 2016 were well below EPA established health advisory levels.
Perfluorohexan esulfonic Acid	PPB	0.0049	0.0038 - 0.0068	
Perluorohexan oic Acid	PPB	0.015	0.011 - 0.017	
Perfluorononan oic Acid	PPB	0.0011	ND - 0.0043	
Perfluorooctan esufonic Acid	PPB	0.010	0.0077 - 0.015	
Perfluorooctan oic Acid	PPB	0.012	0.0099 - 0.014	

Table 3

NJDWSC Water Quality Report

PRIMARY CONTAMINANTS

Regulated	Units	COMPLIANCE	MCLG	MCL	Highest	Average	Source of Contamination
Contaminant		ACHIEVED			Level	Detected	
Turbidity	NTU	Yes	NA	TT (1 NTU)	0.38	0.12	Soil Runoff.
		Yes	NA	TT (% of samples	99.7%	NA	
				<0.3 NTU) Minimum			
				95% Required			
Total Organic	%	Yes	NA	TT = % removal or	1.0 (RAA)	0.76 - 1.0	Naturally present in the
Carbon				removal ratio		RAA	environment.
1							

INORGANIC CONTAMINANTS

Regulated Contaminant	UNIT	COMPLIANCE ACCHIEVED	MCLG	MCL	Highest Result	Range Detected	Source of Contamination/ and Comments
Barium	PPM	Yes	2	2	0.014	-	Erosion of natural deposits; discharge of drilling waste; discharge from refineries
Chromium	PPB	YES	100	100	ND	-	Discharge from steel and pulp mills. Erosion of natural deposits.
Fluoride	PPM	Yes	4	4	ND	-	Erosion of natural deposits
Nickel	PPB	NA	NA	NA	ND	-	Erosion of natural deposits
Nitrate	PPM	Yes	10	10	0.284	-	Runoff from fertilizer use; leaching from septic tanks; sewage and erosion of natural deposits.
Selenium	PPB	YES	50	50	ND	-	Discharge from petroleum and metal refineries; Erosion of natural deposits. Discharge from mines.
Thallium	PPB	Yes	0.5	2	ND	-	Leaching from ore processing sites; Discharge from electronics, glass, and drug factories

SOURCE W	SOURCE WATER TATHOGEN MONITORING											
Contaminant	UNIT	NJDWS	Typical Sources									
		Source Water										
Cryptosporidium	Oocysts /L	0 -0.1	Microbial pathogens found in surface waters throughout the United States.									
Giardia	Cysts/L	0 - 0.1										

Table 2

SECONDARI CONTAMINANTS.											
Detected Secondary Analytes	UNIT	RUL Achieved	RUL	Results							
ABS/LAS	PPB	Yes	500	ND							
Alkalinity	PPM	NA	NA	44							
Aluminum	PPB	YES	200	45							
Chloride	PPM	YES	250	77							
Color	CU	YES	10	2							
Corrosivity		YES	Non-Corrosive	Corrosive							
Hardness (as CaCo3)	PPM	YES	250	72							
Hardness (as CaCo3)	Grains/Gal	YES	15	4							
Iron	PPB	YES	300	6							
Manganese	PPB	YES	50	2							
Odor	TON	YES	3	ND							
pH	SU	YES	6.5 to 8.5	7.98							
Sodium	PPM	Yes	50	42							
Sulfate	PPM	YES	250	10							
TDS	PPM	YES	500	186							
Zinc	PPB	YES	5000	8							

SECONDARY CONTAMINANTS:

SOURCE WATER ASSESSMENT

The NJDEP has prepared Source Water Assessment reports and summaries for all public water systems. The Source Water Assessment and related questions for the PVWC system (PWSID 1605002) and the NJDWSC (PWSID 1613001) can be obtained by logging onto NJDEP's source water assessment web site at <u>www.state.nj.us/dep/swap</u> or by contacting NJDEP's Bureau of Safe Drinking Water at 609-292-5550. If a system is rated highly susceptible for a contamination category, it does not mean a customer is – or will be – consuming contaminated water. The rating reflects the <u>potential</u> for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels. The source water assessments performed on the intakes for each system lists the following susceptibility ratings for a variety of contaminants that may be present in the source water.

Table	4
-------	---

Intakes				Volatile Organic	Inorganic	Radio-	Radon	Disinfection
	Pathogens	Nutrients	Pesticides	Compounds	Contaminants	nuclides		Byproduct
	0							Precursors
PVWC-4	4 - High	4 - High	1 – Medium	4 - Medium	4 - High	4 - Low	4 - Low	4 - High
Surface Water			3 - Low					
NJDWSC – 5	5 - High	5 - High	2 – Medium	5 - Medium	5 - High	5 - Low	5 - Low	5 - High
Surface Water	_	_	3 - Low		_			_

Intake Susceptibility Ratings

General Notes

INFORMATION ABOUT DRINKING WATER CONTAMINANTS

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline 800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Sodium – PVWC waster was above New Jersey's Recommended Upper Limit (RUL) for Sodium. For healthy individuals, the sodium intake from water is not important, because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be a concern to individuals on a sodium restricted diet.

Lead & Copper - In 2015 the Manchester Utilities Authority collected 30 samples from residences throughout the distribution system for lead and copper. The number reported is the 90th percentile or more correctly the highest sample reported for the 27th sample.

The Manchester Utilities Authority is pleased to provide you this information along with the results compiled by the PVWC. Please note that Manchester Utilities Authority receives a blend of water from the PVWC and NJDWAC.

This booklet contains important information about the water in your community. Translate or speak to someone who understands it well.

El informe conteine informacion impotante sobre calidad del agua en su comunidad. Traduzcalo o hable con alguien que lo entienda bien.

La reiazione contiene importanti informazioni su la del qualita del acqua de Ia Comunita. Tradurio o parfame con un amico che lo comprenda.

Health Effects of Detected Contaminants:

(1) *Turbidity*. Turbidity has no health risk effects. However, turbidity can interfere with disinfecting and provide a medium for biological growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as cramps, nausea, diarrhea, and associated headaches.

Radioactive Contaminants/Inorganic Contaminants

- (2) *Copper*. Copper is an essential nutrient, but some people who drink water-containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water-containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's disease should consult their personal doctor.
- (3) *Lead.* Infants and children who drink water-containing lead in excess of the action level could experience delays in their physical or mental development. Children could show slight deficits an attention span and learning abilities. Adults who drink this water over many years could develop kidney problems and high blood pressure.
- (4) *Sodium* PVWC was above New Jersey's recommended upper limit (RUL) for Sodium. For healthy individuals, the sodium intake from water is not important because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the may be of concern to individuals on a sodium restricted diet.

Volatile Organic Contaminants

(5) *TTHMs (Total Trihalomethanes)*. Some people who drink water-containing trihalomethanes in excess of the MCL over many years could experience problems with their liver, kidneys, or central nervous systems, and may have an increased chance of getting cancer.

Vulnerable Population Language

40 CFR: 141.154(a)

Some People may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDSC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

SPECIAL CONSIDERATIONS REGARDING CHILDREN, PREGNANT WOMEN, NURSING MOTHERS, AND OTHERS

Children may receive a slightly higher amount of contaminant present in the water than do adults, on a body weight basis, because they may drink a greater amount of water per pound of body weight than do adults. For this reason, reproductive or developmental effects are used for calculating a drinking water standard if these effects occur at lower levels than other health effects of concern. If there is insufficient toxicity information for a chemical (for example, lack of data on reproductive or developmental effects), an extra uncertainty factor may be incorporated into the calculation of the drinking water standard, thus making the standard more stringent, to account for additional uncertainties regarding these effects. In the case of lead and nitrate, effects on infants and children are the health endpoints upon which the standards are based.

Additional Special Notice on Lead

Lead: Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that the lead levels at your home may be higher than at other homes in your community as a result of materials used in your home plumbing. If you are concerned about elevated lead levels in your home water, you may wish to have your tap water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the SAFE DRINKING WATER HOT LINE (1-800-426-4791) Adults who drink this water over many years could develop kidney problems and high blood pressure.

WATER SUPPLIED BY THE MANCHESTER UTILITIES AUTHORITY IS IN COMPLIANCE WITH LEAD AND COPPER BASED ON THE 90TH PERCENTILE RESULT. ALL INDIVIDUAL LEAD AND COPPER SAMPLES WERE ALSO BELOW THE ACTION LEVEL.

QUESTIONS & ANSWERS

Why is there Chlorine in my water?

A century ago, acute diseases such as typhoid fever and cholera were a very real threat to our health because the microorganisms that caused these diseases were found in the public drinking water. However, for almost 100 years, water suppliers in America and other countries have used chlorine to treat or disinfect drinking water. According to the U.S. Environmental Protection Agency and other health agencies, chlorine is currently one of the most effective disinfectants to kill harmful microorganisms. Disinfection of all public water supplies is required by federal and state laws and regulations, including the Safe Drinking Water Act and the Surface Water Treatment Rule.

Does Manchester Utilities Authority add fluoride to my drinking water?

NO. Manchester Utilities Authority does not add fluoride to the water in your community. However, a small amount of fluoride may occur naturally in your water.

Is my water hard or soft?

Hardness describes the level of dissolved natural minerals (calcium and magnesium) in drinking water. These minerals are an important part of a healthy diet. Hard water may contain more mineral nutrients and less sodium. A gradual build-up of

calcium and magnesium in hard water can form harmless, filmy white deposits on faucets, bathtubs, and teakettles. Hard Water also requires more soap to lather fully. The degree of water hardness depends on where you live. Manchester Utilities Authority water typically has a hardness in a range of 9 to 72 parts per million which is considered soft.

My water has a funny taste, it tastes different, or it has a chemical taste.

Seasonal temperatures as well as the required chlorination of your water supply may affect the taste, odor and color of water.

My water is cloudy.

Is it hot or cold water that is cloudy? If it is cold water, then it could be the need for an aerator to stop air bubbles or clean the existing one. If it's hot water, then the hot water heater needs to be flushed because of mineral deposits.

My water is rusty.

The water department is probably in the area flushing hydrants or possibly there is a main break in the area. Hydrant flushing is a process through which water is forced through the mains to dislodge small particles of rust and sediment that have built up over time. This sediment does not affect the water purity, but can cause the water to become discolored. The water is safe to drink and the discoloration often disappears within a short time.

When is my water tested?

The Manchester Utilities Authority regularly monitors the quality of your drinking water as required by the EPA and the NJDEP and follows all regulations as set forth in the Safe Drinking Water Act. Samples are taken from the distribution system and from the Burhans Avenue Pump Station, the Point of Entry for the water supplied by the PVWC. In addition the PVWC and the NJDWSC regularly monitor the water supply for hundreds of different compounds.

The minimum testing schedule followed by Manchester Utilities Authority is as follows:

Total Coliform – Ten samples per month from the distribution system. Ten samples are required. Free Chorine Residual:

- Ten samples per month from the distribution system. Ten samples are required.
- Continuous online monitoring of the Point of Entry from the PVWC.
- Daily at the POE

Orthophosphate (Corrosion Inhibitor)

- Seven samples per month from the distribution system
- Daily at the POE

Lead and Copper – Thirty samples, once every three years, from points of use in the distribution system Total THM's – Quarterly, four sample taken from the points of maximum residence time in the system. HAA5 - Quarterly, four samples taken from the points of maximum residence time in the system.

Current Water Issues

TTHMs (Total Trihalomethanes). The PVWC has completed construction of major additions and improvements to the Little Falls Treatment Plant. The process improvements have resulted in improved water quality and lower THM levels in the distribution system.

The Safe Water Drinking Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos and synthetic organic chemicals. Our system received waivers for asbestos and synthetic organic compounds.

We at the Manchester Utilities Authority work hard to provide top quality water to every tap. We ask that all of our customers help us to protect our water sources, which are the heart of the community, our way of life and our children's future.

If you have any questions or would like a hard copy of this report, please call our office at (973)-942-6538 x 130. ADDITIONAL INFORMATIONAL RESOURCES